The Laplace equation in 3 - D domains with cracks : Dual singularities with log terms and extraction of corresponding edge flux intensity functions
نویسندگان
چکیده
The singular solution of the Laplace equation with a straight-crack is represented by a series of eigenpairs, shadows and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi-dual function method (QDFM).The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p-version finite element solutions. Numerical examples are provided. Copyright c ⃝ 0000 John Wiley & Sons, Ltd.
منابع مشابه
Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains
Asymptotics of solutions to the Laplace equation with Neumann or Dirichlet conditions in the vicinity of a circular singular edge in a three-dimensional domain are derived and provided in an explicit form. These asymptotic solutions are represented by a family of eigen-functions with their shadows, and the associated edge flux intensity functions (EFIFs), which are functions along the circular ...
متن کاملAnalytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)
This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...
متن کاملComputing Flux Intensity Factors by a Boundary Method for Elliptic Equations with Singularities
A simple method for computing the ̄ux intensity factors associated with the asymptotic solution of elliptic equations having a large convergence radius in the vicinity of singular points is presented. The Poisson and Laplace equations over domains containing boundary singularities due to abrupt change of the boundary geometry or boundary conditions are considered. The method is based on approxim...
متن کاملExtracting generalized edge flux intensity functions with the quasidual function method along circular 3-D edges
Explicit asymptotic series describing solutions to the Laplace equation in the vicinity of a circular edge in a three-dimensional domain was recently provided in Yosibash et al, Int. Jour. Fracture, 168 (2011), pp. 31-52. Utilizing it, we extend the quasidual function method (QDFM) for extracting the generalized edge flux intensity functions (GEFIFs) along circular singular edges in the cases o...
متن کاملExtracting Generalized Edge Flux Intensity Functions by the Quasidual Function Method along Circular 3-d Edges
Explicit asymptotic series describing solutions to the Laplace equation in the vicinity of a circular edge in a three-dimensional domain was recently provided in Yosibash et al, Int. Jour. Fracture, 168 (2011), pp. 3152. Utilizing it, we extend the quasidual function method (QDFM) for extracting the generalized edge flux intensity functions (GEFIFs) along circular singular edges in the cases of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014